Miguel A. Corrales

Affiliations. Deep Imaging Group (DIG) | Advanced Reservoir Modeling and Simulation Group (ARMS) @KAUST

prof_pic.jpg

Hello everyone and welcome to my personal website :smiley: :v: !

I am a Ph.D. student in the Earth Science and Engineering Program at King Abdullah University of Science and Technology (KAUST). My research focuses on reservoir characterization with the help of deep generative modeling for subsurface imaging applications. Hopefully, I will try to incorporate uncertainty quantification along those lines.

My research aims to tackle the challenges to bridge deep learning and subsurface imaging. My knowledge comprehends deep learning, deep generative modeling, uncertainty quantification , fluid flow in porous media, percolation theory, and inverse problems.

news

Oct 25, 2022 Welcome to my personal website. I am currently working on it :hammer: :wrench: :bulb:. Plese be patient with the updates.
Oct 9, 2022 Hackathon KAUST NVIDIA 2022 Winners :trophy: Accelerating Scientific applications using GPU’s.
Jun 7, 2022 BEST IN SHOW, Hackathon Winners :trophy: :trophy: :trophy: - Explainable A.I., EAGE ANNUAL 2022, Madrid-Spain

selected publications

  1. A Wasserstein GAN with Gradient Penalty for 3D Porous Media Generation.
    M. Corrales, M. Izzatullah, H. Hoteit, and M. Ravasi
    Nov 2022
  2. Plug and Play Post-Stack Seismic Inversion with CNN-Based Denoisers
    J. Romero, M. Corrales, N. Luiken, and M. Ravasi
    Nov 2022
  3. Bayesian RockAVO: Direct petrophysical inversion with hierarchical conditional GANs
    M. Corrales, M. Izzatullah, M. Ravasi, and H. Hoteit
    Aug 2022
  4. Data-Driven, Direct Rock-Physics Inversion of Pre-Stack Seismic Data
    M. Corrales, M. Ravasi, and H. Hoteit
    Jun 2022
  5. The Potential for Underground CO2 Disposal Near Riyadh
    M. Corrales, S. Mantilla, A. Tasianas, H. Hoteit, and A. Afifi
    Feb 2022